Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Organic Contaminant Biodegradation by Oxidoreductase Enzymes in Wastewater Treatment.

Identifieur interne : 000047 ( Main/Exploration ); précédent : 000046; suivant : 000048

Organic Contaminant Biodegradation by Oxidoreductase Enzymes in Wastewater Treatment.

Auteurs : Edward A. Barber [Royaume-Uni] ; Ziyi Liu [Royaume-Uni] ; Stephen R. Smith [Royaume-Uni]

Source :

RBID : pubmed:31963268

Abstract

Organic contaminants (OCs), such as pharmaceuticals, personal care products, flame retardants, and plasticisers, are societally ubiquitous, environmentally hazardous, and structurally diverse chemical compounds whose recalcitrance to conventional wastewater treatment necessitates the development of more effective remedial alternatives. The engineered application of ligninolytic oxidoreductase fungal enzymes, principally white-rot laccase, lignin peroxidase, and manganese peroxidase, has been identified as a particularly promising approach for OC remediation due to their strong oxidative power, broad substrate specificity, low energy consumption, environmental benignity, and cultivability from lignocellulosic waste. By applying an understanding of the mechanisms by which substrate properties influence enzyme activity, a set of semi-quantitative physicochemical criteria (redox potential, hydrophobicity, steric bulk and pKa) was formulated, against which the oxidoreductase degradation susceptibility of twenty-five representative OCs was assessed. Ionisable, compact, and electron donating group (EDG) rich pharmaceuticals and antibiotics were judged the most susceptible, whilst hydrophilic, bulky, and electron withdrawing group (EWG) rich polyhalogenated compounds were judged the least susceptible. OC susceptibility scores were in general agreement with the removal rates reported for experimental oxidoreductase treatments (R2 = 0.60). Based on this fundamental knowledge, and recent developments in enzyme immobilisation techniques, microbiological enzymic treatment strategies are proposed to formulate a new generation of biological wastewater treatment processes for the biodegradation of environmentally challenging OC compounds.

DOI: 10.3390/microorganisms8010122
PubMed: 31963268
PubMed Central: PMC7022594


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Organic Contaminant Biodegradation by Oxidoreductase Enzymes in Wastewater Treatment.</title>
<author>
<name sortKey="Barber, Edward A" sort="Barber, Edward A" uniqKey="Barber E" first="Edward A" last="Barber">Edward A. Barber</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ</wicri:regionArea>
<wicri:noRegion>London SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ziyi" sort="Liu, Ziyi" uniqKey="Liu Z" first="Ziyi" last="Liu">Ziyi Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ</wicri:regionArea>
<wicri:noRegion>London SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Stephen R" sort="Smith, Stephen R" uniqKey="Smith S" first="Stephen R" last="Smith">Stephen R. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ</wicri:regionArea>
<wicri:noRegion>London SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31963268</idno>
<idno type="pmid">31963268</idno>
<idno type="doi">10.3390/microorganisms8010122</idno>
<idno type="pmc">PMC7022594</idno>
<idno type="wicri:Area/Main/Corpus">000157</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000157</idno>
<idno type="wicri:Area/Main/Curation">000157</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000157</idno>
<idno type="wicri:Area/Main/Exploration">000157</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Organic Contaminant Biodegradation by Oxidoreductase Enzymes in Wastewater Treatment.</title>
<author>
<name sortKey="Barber, Edward A" sort="Barber, Edward A" uniqKey="Barber E" first="Edward A" last="Barber">Edward A. Barber</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ</wicri:regionArea>
<wicri:noRegion>London SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ziyi" sort="Liu, Ziyi" uniqKey="Liu Z" first="Ziyi" last="Liu">Ziyi Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ</wicri:regionArea>
<wicri:noRegion>London SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Stephen R" sort="Smith, Stephen R" uniqKey="Smith S" first="Stephen R" last="Smith">Stephen R. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ</wicri:regionArea>
<wicri:noRegion>London SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microorganisms</title>
<idno type="ISSN">2076-2607</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Organic contaminants (OCs), such as pharmaceuticals, personal care products, flame retardants, and plasticisers, are societally ubiquitous, environmentally hazardous, and structurally diverse chemical compounds whose recalcitrance to conventional wastewater treatment necessitates the development of more effective remedial alternatives. The engineered application of ligninolytic oxidoreductase fungal enzymes, principally white-rot laccase, lignin peroxidase, and manganese peroxidase, has been identified as a particularly promising approach for OC remediation due to their strong oxidative power, broad substrate specificity, low energy consumption, environmental benignity, and cultivability from lignocellulosic waste. By applying an understanding of the mechanisms by which substrate properties influence enzyme activity, a set of semi-quantitative physicochemical criteria (redox potential, hydrophobicity, steric bulk and pKa) was formulated, against which the oxidoreductase degradation susceptibility of twenty-five representative OCs was assessed. Ionisable, compact, and electron donating group (EDG) rich pharmaceuticals and antibiotics were judged the most susceptible, whilst hydrophilic, bulky, and electron withdrawing group (EWG) rich polyhalogenated compounds were judged the least susceptible. OC susceptibility scores were in general agreement with the removal rates reported for experimental oxidoreductase treatments (R
<sup>2</sup>
= 0.60). Based on this fundamental knowledge, and recent developments in enzyme immobilisation techniques, microbiological enzymic treatment strategies are proposed to formulate a new generation of biological wastewater treatment processes for the biodegradation of environmentally challenging OC compounds.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31963268</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2076-2607</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Microorganisms</Title>
<ISOAbbreviation>Microorganisms</ISOAbbreviation>
</Journal>
<ArticleTitle>Organic Contaminant Biodegradation by Oxidoreductase Enzymes in Wastewater Treatment.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E122</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/microorganisms8010122</ELocationID>
<Abstract>
<AbstractText>Organic contaminants (OCs), such as pharmaceuticals, personal care products, flame retardants, and plasticisers, are societally ubiquitous, environmentally hazardous, and structurally diverse chemical compounds whose recalcitrance to conventional wastewater treatment necessitates the development of more effective remedial alternatives. The engineered application of ligninolytic oxidoreductase fungal enzymes, principally white-rot laccase, lignin peroxidase, and manganese peroxidase, has been identified as a particularly promising approach for OC remediation due to their strong oxidative power, broad substrate specificity, low energy consumption, environmental benignity, and cultivability from lignocellulosic waste. By applying an understanding of the mechanisms by which substrate properties influence enzyme activity, a set of semi-quantitative physicochemical criteria (redox potential, hydrophobicity, steric bulk and pKa) was formulated, against which the oxidoreductase degradation susceptibility of twenty-five representative OCs was assessed. Ionisable, compact, and electron donating group (EDG) rich pharmaceuticals and antibiotics were judged the most susceptible, whilst hydrophilic, bulky, and electron withdrawing group (EWG) rich polyhalogenated compounds were judged the least susceptible. OC susceptibility scores were in general agreement with the removal rates reported for experimental oxidoreductase treatments (R
<sup>2</sup>
= 0.60). Based on this fundamental knowledge, and recent developments in enzyme immobilisation techniques, microbiological enzymic treatment strategies are proposed to formulate a new generation of biological wastewater treatment processes for the biodegradation of environmentally challenging OC compounds.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barber</LastName>
<ForeName>Edward A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ziyi</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Stephen R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Microorganisms</MedlineTA>
<NlmUniqueID>101625893</NlmUniqueID>
<ISSNLinking>2076-2607</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">enzymatic degradation</Keyword>
<Keyword MajorTopicYN="N">organic contaminant</Keyword>
<Keyword MajorTopicYN="N">oxidoreductase enzymes</Keyword>
<Keyword MajorTopicYN="N">redox potential</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31963268</ArticleId>
<ArticleId IdType="pii">microorganisms8010122</ArticleId>
<ArticleId IdType="doi">10.3390/microorganisms8010122</ArticleId>
<ArticleId IdType="pmc">PMC7022594</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioresour Technol. 2019 Jan;271:360-367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30293031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AMB Express. 2013 Oct 24;3(1):63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24152339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2017 Mar 15;111:297-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28104517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Apr;1804(4):899-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20056172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Mar 22;54(6):2288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16536609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jun 11;35(23):7608-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8652543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2009 Jun 1;187(2):84-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2018 Oct 5;359:241-247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30036754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Polymers (Basel). 2018 Jul 19;10(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30960723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Apr;71(4):1775-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15812000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2006 Apr;157(3):248-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16256312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2018 Aug;205:649-661</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29723723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 27;7(1):16429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29180686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2010 Jun;80(3):271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2015 Jun;33:268-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25867110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2009 Jun 15;407(13):4157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19362327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2016 Jul 27;18(30):20615-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27412764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2008 Mar 7;6(5):868-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18292878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2018 Apr 15;133:182-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29407700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2016 Sep 15;180:228-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27233048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2017 Jul 15;334:233-243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28415001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Mar;61(3):1098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16534959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2013 Aug 7;42(15):6223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>3 Biotech. 2019 Apr;9(4):129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30863708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2007 Jul;107(7):3212-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17595149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Environ Res. 2019 Apr;91(4):281-291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30802358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2011 Apr;45(8):2439-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21388651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2012 Sep 30;233-234:235-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22840500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr Sci. 2004 Aug;42(7):354-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15355574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017 Feb 23;52(3):235-253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27901630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Monit. 2012 Jul;14(7):1983-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22673540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2013 Dec;33(4):404-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23051065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2019 Jul 17;21(28):15805-15814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31282513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Sustain Chem Eng. 2018 Feb 5;6(2):2037-2046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29430340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2018 May 1;622-623:1417-1430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29890607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2011 Sep 15;409(20):4351-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21807398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Aug;141:97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23499178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2004 Jul;38(12):2874-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2019 Mar 1;233:649-659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30605791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Nov 23;8(1):17285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30470810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2009 May;75(6):745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2018 Mar;234:88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29172042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2007 Jul 15;41(14):5077-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17711226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2011 Jan;37(1):226-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20797791</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Barber, Edward A" sort="Barber, Edward A" uniqKey="Barber E" first="Edward A" last="Barber">Edward A. Barber</name>
</noRegion>
<name sortKey="Liu, Ziyi" sort="Liu, Ziyi" uniqKey="Liu Z" first="Ziyi" last="Liu">Ziyi Liu</name>
<name sortKey="Smith, Stephen R" sort="Smith, Stephen R" uniqKey="Smith S" first="Stephen R" last="Smith">Stephen R. Smith</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000047 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000047 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31963268
   |texte=   Organic Contaminant Biodegradation by Oxidoreductase Enzymes in Wastewater Treatment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31963268" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020